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A method is described which produces sensible estimates of structure factor moduli from intensity obser- 
vations, whether the latter are positive or negative. Preliminary applications of the method to data from the 
protein phosphorylase b are summarized. 
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Introduction 

Reflections with small structure factor moduli have 
always caused problems. Their true intensities are, of 
course, non-negative," but because of counting errors 
their measured intensities may not be. What should one 
do with negative intensity measurements? If they are 
left untouched, a problem results upon encountering 
the first square rooting. If they are omitted from the 
data set, bias will result in the determined structure. If 
they are set to zero, and no adjustment made to their 
standard deviations, bias will again result, although on 
a smaller scale (Hirshfeld & Rabinovich, 1973). 

To avoid these biases, Hirshfeld & Rabinovich 
(1973) recommend that all intensity measurements 
should be included in a crystallographic refinement, 
whether their observed values are positive or negative. 
Furthermore they suggest that least-squares refinement 
should proceed by minimization of the discrepancies 
between the observed and calculated squares of the 
structure factor moduli, rather than the moduli them- 
selves. This allows the negative observations to be 
included and so prevents any bias entering the calcu- 
lations. We are in complete agreement with these 
conclusions. 

Nevertheless, in many crystallographic studies it is 
essential to obtain estimates of the structure factor 
moduli and their associated error, whatever the value 
of the observed intensity. Estimates of the moduli are 
necessary, for example, in the calculation of Fourier or, 
more importantly, difference Fourier syntheses. How 
should the problems associated with negative intensity 
observations be tackled in such circumstances? 

Fortunately the problems are almost entirely due to 
poor statistical methodology. Instead of thanking the 
data for the information that certain structure factor 
moduli are small, we accuse them of assuming 'impos- 
sible' negative values. What we should do is combine 
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our knowledge of the non-negativity of the true inten- 
sities with the information concerning their magnitude 
contained in the data. Bayesian statistics provide the 
techniques for doing precisely this. 

The Bayesian approach to statistical inference (see, 
for example, Box & Taio, 1973; Lindley, 1965) differs 
fundamentally from the more conventional, frequentist 
approach (see, for example, Hamilton, 1964) and the 
reader is strongly urged before continuing to acquaint 
himself with the Bayesian theory of which the following 
is a brief description. 

Probability distributions are taken to represent 
degrees of belief rather than relative frequencies. Prior 
to performing an experiment designed to gain infor- 
mation on a certain parameter 0, we have a certain 
distribution of belief in the possible values of 0. Assume 
that this distribution has density function Po(.). Note 
that we use subscripts to indicate the quantity about 
which we are expressing our beliefs. Note also that we 
must always have some belief about 0, otherwise we 
could never design an informative 'experiment. The 
experiment gives rise to an observation X which we 
believe is related to the parameter through the sampling 
distribution with density function px(.lO). Note that 
this distribution is conditional on the unknown param- 
eter, 0. It describes simply how we would expect our 
observations to be distributed if we knew 0. If the 
observation X = x is actually made, then Bayes's 
theorem tells us that our belief in 0 is modified by the 
data to 

po(Olx) ~o px(xl O)po(O). (0.0) 

The oc means 'is proportional to as a function of 0'. The 
constOant of proportionality may be determined by 
remembering that a probability density function inte- 
grates to unity. 

1. Intensity measurements 

At a given reflection the parameter that concerns us is 
the true intensity. It is, perhaps, arguable that the true 
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structure factor modulus is the parameter of interest, 
but, as will become apparent, this would lead to pre- 
cisely the same results. We shall denote the true 
intensity by J, i.e. the above 8 = J in this particular 
case. If the observed intensity is denoted by I, i.e. X = 
I, then Bayes's theorem (0.0) becomes 

Ps(Jll) ~s p'(IIJ) ps(J), (1.0) 

where Ps(.) is our prior belief in the true intensity, 
p~(. I J) is our belief in the relation between the observed 
and true intensity. 

This is an appropriate point at which to explain our 
interpretation of an 'intensity observation'. We assume 
that all the relevant data sets, collected by either diffrac- 
tometer or photographic methods, have been corrected 
for Lorentz, polarization, absorption, extinction and 
radiation-damage effects, have been reduced to a 
common scale and have been merged over equivalents. 
I is this 'merged intensity' containing all the available 
observational information at the given unique reflection. 
All the operations needed to produce this merged 
intensity are assumed to have been carried out on the 
raw intensity measurements, be they positive or 
negative. 

Throughout we shall assume that PI(.IJ) is a normal 
density, viz 

I~N(J ,  a2). (1.1) 

Note that we assume that the observation is unbiased 
on the true intensity J and has known variance a 2. 
Further note that we take a 2 to be particular to each 
individual reflection. Thus we have three assumptions - 
normality, unbiasedness and known variance - which 
require further discussion. 

Firstly, whilst we accept the data are certainly not 
exactly normally distributed, we do contend that the 
normal distribution is an adequate approximation for 
our purposes. From a theoretical point of view we are 
encouraged in this belief, since the merged intensity I 
is made up of sums of differences of theoretically 
Poisson-distributed counts. Such operations on Poisson 
variables reduce them to normality quickly (Irwin, 
1937; Skellam, 1946). Furthermore, it has been our 
observation that the actual distributions of I have not 
been noticeably skew, although they have been slightly 
sharper or flatter than the normal. We believe that such 
deviations have little effect on our main results. 

Our second assumption of unbiasedness is more sus- 
pect. It is well known that some data reduction methods 
produce biased measurements on small intensities 
(Tickle, 1975; French, 1975). However, such bias is 
invariably introduced because the data reduction 
method 'forces' the observed intensities to be non- 
negative, e.g. ordinate analysis of diffractometer data 
(Watson, Shotton, Cox & Muirhead, 1970). Our 
methods are both inappropriate and unnecessary in 
such cases. For diffractometer data reduced by 

background-peak-background scanning or profile 
analysis (Diamond, 1969; French, 1975, 1 9 7 8 ) o r  
photographic data reduced by similar methods (Wilson 
& Yeates, 1978), unbiasedness is a fair assumption. 

Finally, we have assumed ty 2 is known. This is, of 
course, completely untrue. We no more know the exact 
accuracy of our data than the true intensity. To deal 
with this problem in a Bayesian fashion, we should 
express all our prior beliefs about a 2 in a probability 
distribution, update this in the light of the data and then 
expect the nuisance parameter ty 2 from our posterior 
distribution for J (see, for example, Box & Taio, 1973, 
pp. 70-72). However, it is adequate for our method to 
use a good estimate of o 2 in the distribution (1.1). We 
emphasize that this estimate must be as good as pos- 
sible. Not only must o 2 allow for variations due to 
counting statistics but also for errors arising from 
instrument instability and poor correction factors. Pro- 
cedures for producing such estimates are discussed in 
Dodson (1976), and McCandlish, Stout & Andrews 
(1975). 

Thus, all we have to do is define our prior density 
Ps(.) and we may use (1.0) to obtain our  posterior 
density, Ps(.ll). We shall discuss three possibilities for 
Ps(.) shortly, but defer doing so in order to indicate how 
one should proceed upon obtaining Ps(. II). 

Most, if not all, crystallographic structure-solution 
techniques do not use the posterior density for the 
intensity in its entirety, but use approximations based 
upon the mean and variance of it or its square root, 
i.e. the structure factor modulus. Least-squares re- 
finement is an extremely common example of such a 
technique. So usually we do not require the density 
Ps(. II), but the posterior means and variances: 

Es(JIl)= .1 Jps(JlI)dJ, (1.2) 
0 

oo 

v a r s ( J I / ) =  f [ J -  Es(JlI)]Zps(JlI)dJ, (1.3) 
0 

or, letting F = v/J, 
oo 

Es(FII)= ( VpJ(JlI)dJ, (1.4) 
0 

oo 

v a r s ( F I / ) =  .f [ V -  Es(FlI)12ps(JlI)dJ. (1.5) 
0 

Note that (1.4) and (1.5) provide the solution to the 
problem mentioned above where the structure factor 
modulus is the parameter of interest. 

It should be noted that equations (1.0), (1.2), (1.3), 
(1.4) and (1.5) apply equally well to positive and 
negative intensity measurements. Our procedure has no 
arbitrary cut-off points in it. All the data are treated in 
the same fashion. 

In the next section, we discuss three possibilities for 
our prior density Ps(.). Appendix A indicates how the 
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mean and variances (1.2), (1.3), (1.4) and (1.5) may be 
calculated on a computer for the three different choices 
ofps(.). 

2. Choice of prior distribution 

What do we know about the true intensity a priori? 
First and foremost, we know it is positive. A distri- 
bution that would express precisely this condition is 

= 1 i f J > O  

Ps(J) = 0 i f J  < 0. (2.0) 

Admittedly this density has the embarrassing property 
of integrating to infinity rather than unity, but such an 
'improper' prior distribution is permissible under certain 
circumstances, which, fortunately, apply here. (2.0) 
may be thought of as an approximation to the proper 
prior distribution given by the density 

~ - l / k  i f 0 < J < _ k  (2.1) 
Ps(J) 0 i f J  < 0 or J > k, 

i.e. to the distribution which demands that the intensity 
be a non-negative number not greater than some upper 
limit k. The fact that 1/k 4:1 needs no concern, since 
this difference would be absorbed into the constant of 
proportionality in (1.0). As k ~ or, we obtain (2.0). Of 
course, we could use (2.1) in its own right and set k to 
some unreachable intensity, e.g. that of the main beam. 
If we did so, the results we obtained for such k would 
be indistinguishable from those resulting from (2.0). 

Usually, arguably always, we have considerably more 
knowledge of the intensity than expressed by (2.0). We 
know that, taken as a whole, any moderate or large 
data set obeys Wilson's (1949) statistics. So, for an 
acentric distribution of reflections: 

~ = (Z) -~ e x p ( - J / S )  i f J  > 0 (2.2) 
Ps(J) = 0  if J < 0 ,  

while for a centric distribution of reflections: 

p s ( j ) ~ =  (2rcSJ) -'/2 exp ( - J /2X)  if J_> 0 (2.3) 

t = 0  if J <  0. 

In both cases: 

2; is the mean intensity in the appropriate shell of 
reciprocal space. (2.4) 

Now, of course, Z' is unknown and, as for tr 2, we should 
express our beliefs about Z" in a probability distribution 
a priori, analyse all the data to learn about £', and then 
expect the nuisance parameter S from the posterior 
distribution for J. Again, however, since the data sets 
that we usually collect contain a fair number of re- 
flections, estimating Z' in shells of reciprocal space and 
then using these estimates in (2.2) and (2.3) does not 
cause noticeable bias. This is precisely what we do: 

estimate 2; in shells of reciprocal space. In doing so we 
include all the data, positive and negative. The appro- 
priate value of 2; then serves in (2.2) or (2.3) to 
calculate the values (1.2), (1.3), (1.4) and (1.5) needed 
in the later stages of the structure determination. 

It would, of course, be possible to use prior densities 
specific to particular space groups, but we have not 
done this. 

3. Illustration of the effect of the algorithm 

In Fig. 1 we illustrate the application of the algorithm. 
The three curves in (1.0) are shown: the prior, pj(J) ,  is 
dotted; the likelihood, pl(IIJ),  is dashed; and the 
posterior, pj(JlI),  is continuous. The observed intensity 
and the posterior mean intensity are indicated. 

For the most part the effect of the algorithm depends 
on the ratio of I to a (i.e. on the significance of the 
observation) with secondary dependence on the ratio of 
tr 2 to Z' (see Appendix A). In order to illustrate the 
main effect we have applied the algorithm to a sequence 
of hypothetical intensity observations ranging from - 3  
to 50 standard deviations, i.e. tr 2 has been set to unity. 
For this illustration 2; was chosen to be 20-0. We 
should point out that this has the implication that we 
are considering observations on a sequence of different 
crystals. Table 1 presents our results. 

The effect of the procedure is maximal on the 
smallest observations and is negligible for an obser- 
vation greater than about three standard deviations in 
the acentric case and about six standard deviations in 
the centric. For the lower values of the observed 
intensity, we note that the posterior mean is lower in the 
centric than in the acentric case, whilst for the higher 
values it is slightly higher. This reflects the relative 
shapes of Wilson's distributions. We also note that an 
observation of minus three standard deviations leads to 
a posterior standard deviation lower than that resulting 
from an observation of zero.This confirms our intuition 

x 
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Fig. 1. Probability density functions for a hypothetical acentric 
reflection with S = 20.0, I = - 1 . 0  and a = 1.0. Dotted line: 
prior density Pa(.), dashed line: likelihood, p~(IIJ), solid line: 
posterior density, pj(Jll). Posterior mean intensity = 0.515, 
posterior s tandard deviation = 0.440. N.b. The curves have not 
been drawn on the same vertical scale. 
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Table 1. Posterior means and standard deviations for 
both the intensities and the structure factor moduli 
derived from a sequence of  hypothetical observations 

with unit standard deviation 
The prior distributions are Wilson's for both the centric and 

acentric cases. Thoughout S = 20.0. 

Observation Posterior moments 
I E(JII) o(JIl) E(FII) o(F[I) 

(a) Acentric series 
- 3 . 0  0.280 0.264 0.472 0.238 
- 2 . 0  0.368 0.335 0.545 0.268 
- 1 . 0  0.515 0.440 0.650 0.305 

0.0 0.780 0.595 0.812 0-347 
1-0 1-257 0.786 1.056 0.376 
2.0 2.011 0.938 1.372 0.360 
3.0 2.955 0.995 1.691 0.307 
4.0 3.950 1.000 ! .987 0.252 
5.0 4.950 1.000 2.225 0.225 
6.0 5.950 1.000 2.439 0.205 , 

10-0 9.950 1.000 3.154 0.159 
20.0 19-950 1.000 4.467 0.112 
50-0 49.950 1.000 7.068 0.071 

(b) Centric series 
- 3 . 0  0.144 0-196 0.304 0.226 
- 2 . 0  0.194 0.255 0.355 0.260 
- 1 . 0  0.284 0.352 0.435 0-308 

0.0 0.469 0.516 0.574 0.373 
1-0 0.876 0.766 0.824 0.444 
2.0 1-678 1-000 1.216 0.447 
3.0 2.757 1.052 1.623 0.352 
4-0 3.910 1.028 1.938 0.274 
5.0 4.868 1.020 2.194 0.233 
6.0 5.888 1.015 2.417 0.210 

10.0 9.924 1.006 3.146 0.160 
20.0 19.950 1.001 4.465 0-112 
50.0 49.965 1.000 7.068 0.071 

that negative observations actually carry more infor- 
mation than small positive ones. 

The behaviour of the posterior standard deviation 
for the true intensity in the centric case requires further 
comment. As can be seen, for observed intensities of 
moderate size the posterior standard deviation takes 
values greater than unity, i.e. greater than the standard 
deviation of the observation. At first sight this is surely 
wrong. However, consider the situation more carefully. 
The density of Wilson's distribution for a centric 
reflection, see (2.3), has an infinite spike at the origin. 
It is emphatic that we should expect small obser- 
vations. The increase in the posterior standard deviation 
over unity reflects the conflict between our prior expec- 
tation of a small intensity and our observation of a 
moderate or large one. Our first intuition that the obser- 
vation standard deviation is an upper bound for the 
posterior standard deviation of the intensity is fallacious. 
It derives from the common misunderstanding in 
frequentist statistics that the distribution of an estimate 
of a parameter is identically the same as the distri- 
bution of the true parameter. In fact, the second 

distribution is an ill-defined concept in frequentist 
statistics (Barnett, 1973; French, 1977). 

We have checked our algorithms (see Appendix A) 
for calculating the posterior moments against full-scale 
numerical integration. The errors induced by our 
approximations are at most 3% and in the vast majority 
of cases much less than 1%. The errors are, in fact, 
confined to the region in which we linearly interpolate 
values from a table generated by full-scale numerical 
integration and also the region of smaller intensity 
observation in which we first use our series approxi- 
mation. For the higher values of the observed intensities 
the errors are negligible, as might be expected since the 
error is at most of order 1/13 

4. Implementation 

The algorithms which evaluate the posterior means and 
variances are described in Appendix A, and have been 
programmed in Fortran.* In this section, we describe 
the overall organization of the program in which these 
routines are implemented. The four principal steps are 
as follows. 

(1) The maximum and minimum values of4(sin 2 0)/ 
2 l are found and the data divided into a suitable 
number of ranges of this parameter. The maximum 
number of such ranges is defined to be 50. If the total 
number of unique reflections is small, the number of 
ranges is restricted so that there is a minimum of 20 
reflections in each. This ensures a reasonable estimate 
of L" in each range. 

(2) The mean intensity S is computed within each 
range and a table set up to allow linear interpolation of 
Z' for any particular reflection in the data. 

(3) The observed value of each intensity (possibly 
negative) is read, together with its standard deviation. 
The value of Z' appropriate to this reflection is linearly 
interpolated from the table calculated in step 2. This 
value of L" is multiplied by the multiplicity of the 
reflection (Iwasaki & Izo, 1977). The value of Z' thus 
obtained is our estimate of the mean intensity parameter 
of either of Wilson's distributions (2.2) or (2.3). Using 
this and the observed int6nsity and standard deviation, 
the posterior mean and standard deviation of the 
structure factor moduli are calculated by our Fortran 
routines. All observations are treated in the same 
manner, be they positive or negative. There is no dis- 
continuity in the manner in which reflections are con- 
sidered. 

* The routines have been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 33352 
(8 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH 1 2HU, England. 
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(4) In the same loop as step 3, the cumulative dis- 
tribution of the ratio of observed to mean intensity is 
calculated in each of the ranges of 4(sin 2 O)/22. These 
distributions are calculated from the 'raw' intensity 
observations before they have been processed by our 
routines. They allow the validation of our assumption 
of Wilson's distributions as our prior beliefs. 

5. On the validity of  Wiison's distributions 

A question which must be answered before the method 
can be applied is whether the distributions described by 
Wilson (1949) are valid prior beliefs. This question is 
especially important in the study of protein structures, 
where the atoms are certainly not randomly distributed 
throughout the crystal, as is assumed in deriving the 
distributions. This is evident from Fig. 2, where the fall- 
off in intensity with scattering angle for data from 
phosphorylase b shows a characteristic minimum (for a 
protein) at about 6 A .resolution and a maximum at 
4 . 5 k  

However, the behaviour of the ratio of the observed 
intensity (I) to the mean intensity (27) does conform 
to that predicted by Wilson. In Fig. 3 we show the 
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Fig. 2. Fall-off in mean observed intensity (I) with 4(sin 2 0)/2 2 
for the native phosphorylase b data described in Table 2. 
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Fig. 3. The cumulative distributions of I/Z for both the centric 
and acentric cases. The full curves are calculated from Wilson's 
distribution. The data points are for the native phosphorylase 
data described in Table 2 (before the intensities had been 
processed through the Bayesian estimation routines)• 

experimental cumulative distribution of 1/27 for data 
from phosphorylase b extending to a resolution of 3/i~. 
The agreement with the theoretical distributions 
derived by Wilson is apparent for both the centric and 
acentric terms. The value of 27 was calculated for each 
reflection by the procedure described in the previous 
section. 

This agreement is not surprising from a theoretical 
point of view. The derivation of Wilson's distributions 
is based on the application of a central limit theorem, 
which assumes the atoms are uniformly and indepen- 
dently distributed about the unit cell. If this assumption 
breaks down, alternative central limit theorems may be 
applied (Diananda, 1953, 1954, 1955). These show that 
the forms of Wilson's distributions remain, but the 
theoretical value of Z is not that predicted in his 
1949 paper (French, 1975). 

The agreement between the theoretical and experi- 
mental curves shown in Fig. 3 and the remarks above 
provide confidence in the use of Wilson's distributions 
as valid prior beliefs for these phosphorylase data. 
This result concurs with those reported for crystals 
of small molecules by Howells, Phillips & Rogers 
(1950). 

It is nevertheless important to validate this agreement 
for each set of data independently, as the presence of 
atoms in special positions or the existence of non- 
crystallographic elements of symmetry (or pseudo- 
symmetry) may abrogate the application of these 
prior beliefs for some crystal structures. 

6. The standard deviation of  an observation 

As stated in § 1, it is necessary to have a meaningful 
estimate for the variance of each intensity observation. 
For data measured with a diffractometer, this can be 
obtained from counting statistics, empirically adjusted 
to allow for effects, inter alia, of instrument instability 
(McCandlish, Stout & Andrews, 1975; Dodson, 1976). 
The results described in this article are for data 
measured with an Arndt-Wonnacott  oscillation camera 
(Arndt, Champness, Phizackerly & Wonnacott, 1973). 
An empirical approach has been used to estimate the 
standard deviation of the observations. 

First, within a photograph the variance for each one 
of a set of equivalent terms is estimated from the 
expression: 

N 

E (I,-b 
tr2 = i= l (6.0) 

( N - l )  ' 

where I i is the intensity observation at each of N 
equivalent reflections, I is the unweighted mean intensity 
for these N observations. The standard deviation calcu- 
lated from this variance for all sets of equivalent terms 
was then fitted to an expression of the form 

o = A  + B?, (6.1) 
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where A and B are evaluated by the method of least 
squares. These constants are then used to calculate the 
standard deviation of each observation from the value 
of the mean intensity for that set of equivalent terms. 
Wilson (1977) has pointed out that the variance rather 
than the standard deviation should be estimated from 
an expression of the form of (6.1) and we have therefore 
modified the program to use the expression: 

tr 2 = A + BI .  (6. la) 

The results reported in this paper refer to the use of 
(6.1). 

These initial estimates of the error standard deviation 
o are modified when the complete set of photographs is 
merged to produce the unique set of data (Dodson, 
1976). For each member of each set of equivalent 
reflections we compute the expression: 

l i -  I (6.2) 
G i 

where, now, I l is the intensity of the ith observation, 
i is the weighted mean intensity for the set of equivalent 
terms over all the photographs, cr i is the standard 
deviation of the ith observation as calculated from 
(5.1). 

The data are divided into 20 equal ranges of I and 
the distribution of the expression (6.2) is evaluated for 
each range. The mean and standard deviation for each 
distribution are calculated. Provided that the a i are 
good estimates of the error variation in the data, these 
means should be 0.0 and the standard deviations 1.0. 
Furthermore, these values should be invariant with the 
range of intensity. Because of the manner in which the 
data have been processed up to this point, the means of 
the distributions do correspond well to zero. However, 
the standard deviations may depart from unity, because 
of error variation not yet allowed for in the cri. 

The original a~ are adjusted iteratively according to 
the expression 

cri= C(tr 2 + D]2) l/~, (6.3) 

where C and D are constants over the whole data set 
chosen at each iteration in such a way as to bring the 
standard deviation of expression (6.2) nearer to its 
desired value of unity. At present this procedure is not 
automated, but is a 'manual' one allowing the crystal- 
lographer to use his judgement. We believe that this 
procedure provides an adequate estimate of the stan- 
dard errors. In a typical set of phosphorylase b data 
used in the example below, there are 70 000 observed 
reflections which merge to give 20 000 unique reflec- 
tions (see Table 2). Thus there are a significant number 
of equivalent terms from which to estimate the errors. 
Overdetermination is likely to occur in all applications 
of the oscillation camera to X-ray intensity measure- 
ment. 

Table 2. S u m m a r y  o f  the data sets used in the 
calculations 

The space group is P432~2 with cell dimensions a = b = 128.5, 
c = I 15.9 A. There are 800 000 daltons of protein in the unit cell. 

Data set 

Number of observations 
Number of unique reflections 
Number of unique reflections 

with negative observations 
% of negative observations 
Overall merging R factor* 

Native + 
Native protein maltotriose 

82 439 66 287 
19 480 18 271 

746 486 

3.8% 2-7% 
10.9% 8-7% 

* The merging R factor is defined as 

X v IIi- ~l ,2 "2 I, 
unique i= 1 unique i= 1 

reflections reflections 

where I~ is the ith observation on a set of N equivalent terms, is the 
weighted mean intensity for this set. 

7. Results 

The Bayesian method of producing sensible estimates 
of structure factor moduli whatever the observed 
intensity is expected to affect significantly only those 
terms which are small. As a preliminary test of its 
usefulness, we describe here its application to two sets 
of data for the protein phosphorylase b (Johnson, 
Weber, Wild, Wilson & Yeates, 1977). The first set is 
for the native protein and the second for its complex 
with the pseudo-substrate maltotriose. An impression 
of the quality of the data can be gained from Table 2. 

For each set of data the equivalent observations 
were merged to provide a unique set of intensities with 
associated standard deviations. The data were then 
treated in two different ways. (a) The negative obser- 
vations were set to zero and the intensities square- 
rooted to give estimates of the structure factor moduli, 
both I Fpl for the protein and I Fpsl for the protein plus 
pseudo-substrate complex. The IFpsl data set was sub- 
sequently scaled to the IFpl set. (b) The unique sets of 
intensity data were independently processed by our 
Bayesian method to produce posterior means for IFpl 
and I Fpsl. The two sets were then scaled together as 
above. The respective effects on the isomorphous 
differences, [IFpsl - IFpl[, are shown in Figs. 4 and 5. 
The results of the two treatments differ only when 
IFpl and/or IFpsl are small, and hence also when 
4(sin 2 0)/22 is large. The isomorphous difference for 
the smallest terms is systematically lower for the data 
sets processed by the Bayesian method. The isomor- 
phous differences for the data processed as in (a) above 
show a spurious rise for reflections with a small IFpl or 
IFpsl. 

The discrepancy between difference Fourier syn- 
theses computed from the data treated in the two 
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different ways is negligible. This is not surprising. The 
errors in such syntheses are dominated by the errors in 
the phases; the same set of phases was used in the com- 
putation of both syntheses. It is our intention to pro- 
duce two different sets of phases by the isomorphous 
replacement method based on the two sets of isomor- 
phous differences. The resulting Fourier syntheses will 
lead to a fairer test of our procedure, but the compu- 
tational effort involved is great. 

8. Conclusions 

We should point out that to set negative intensity 
observations to zero, as in the previous section, is the 
worst possible way to treat such information, and will 
introduce maximal bias into the distribution. Other 
methods provide a more sensible means of treating 
negative observations. For example, all observations 

A 
150- 

m ~F 

1136 
o .~ 

215 141 2060 471 312 ~ 
0 =180~ 14271019 7~4 ® ~ 

o 'o s6o lO'OO lgOO 2doo lY 

Fp + Fps 
2 

Fig. 4. The mean isomorphous difference A F ( = l l F p s l  - -  IFpl[) in 
ranges of (rFpr + I Fpsl)/2. The data are those described in Table 
2. O processed by method (a), § 7, x processed by the Bayesian 
method (b), § 7. 

8O 
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40 

2 0 - - - -  
0 

~ ~ ? ~ ° o e ~ .  

K 

b. 4 {6inO)~t= 

O 0 5 5  O 1 1 0  

Fig. 5. The mean isomorphous difference d F ( = l l F p s l  - IFpll) in 
ranges of 4(sin 2 0)/2 2. The data are those described in Table 2. 
O processed by method (a), § 7, x processed by the Bayesian 
method (b), § 7. 

less than three standard deviations ('unobserved data') 
may be set to some fraction of the smallest 'observed' 
intensity. Such methods may lead to a reasonable 
approximation to the true intensity distribution for the 
complete set of data and reduce the bias introduced. 

Nonetheless, we do suggest that all other methods 
suffer from two disadvantages relative to our own. 
Firstly, there is a discontinuity in their treatment of 
the observations with a cut-off applied at some ad hoc 
point, e.g. three standard deviations. Secondly, and 
more importantly, all observations in some class are 
accorded the same intensity. This means that infor- 
mation is certainly lost. The present Bayesian treatment 
is subject to neither of these criticisms. 

Our experimental results strongly suggest that the 
Bayesian method of estimating structure factor moduli 
from intensities is more reliable and sensible than 
previous methods. We believe that a complete structure 
determination based on a Bayesian treatment of the 
data will yield a significant improvement, especially for 
a structure where the available data are weak in 
intensity. 
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and were much encouraged by all in the Laboratory of 
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APPENDIX A 
Evaluation of posterior moments 

Remember that our posterior belief in J is given by 
Bayes's theorem as [see (1.0)]: 

Ps(JlI) ~s p,(IIJ) ps(J). (A.O) 

Further, remember that we are assuming that our con- 
ditional belief in the observation I given the true 
intensity J is normal, viz 

I .,.N(J, a2). !A.1) 

This assumption has the implication that should we 
observed an intensity such that I < - 4 0 ,  then some- 
thing rather untoward has happened. In such cases we 
always reject the reflection, that is omit it from the data 
set. 

Our task in this Appendix is to find algorithms for 
evaluating the posterior moments Es(JII), vars(JII), 
Es(VlI) and vars(Vl/) [see (1.2), (1.3), (1.4)and (1.5)]. 
These evaluations will depend on our choice of prior. 

Consider first the prior (2.0): 

= 1 if J_>0  
Ps(J) = 0  if J < 0 .  (A.2) 
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Using Bayes's theorem (A.0) gives immediately: 

PJ(JII){, ~= 0exp [---~(J- 1)2/a z] ifif JJ<- 0.0 (A.3) 

Thus our posterior belief is a truncated normal distri- 
bution. To evaluate the required moments for this we 
have found the following procedure simplest. For the 
range --4a < I < 30, we linearly interpolate within 
tables calculated by numerical integration routines. For 
I _> 3a, the truncated normal distribution (A.3) is 
negligibly different from the proper normal 

J ~N(L  o2). 

Thus 

G(J~n ~-f 
varj(JlI) ~_ o 2 

Es(FII)~_ v/I 

vars(FII ) ~_ a2/4I 

are perfectly satisfactory approximations. 
Consider now the prior (2.2), i.e. Wilson's distri- 

bution for an acentric reflection: 

{ = (Z-~-I exp (-J/Z-~ i f J > 0  (A.4) 
Ps(J) = 0 i f J  < 0. 

An application of Bayes's theorem (A.0) gives: 

ps( j l i )~  soc. exp[- -4( I -  J)Z/a 2] e x p ( - J / S )  i f J  > 0 

t = 0 ,  if J <  0. 
On 'completing the square' in the exponent: 

f oc exp {---~[J- ( I -  cr2/L-')12/a 2} i f J>_0  

Ps(JII) I L 0 i f J  < . 0 (a.s) 
This posterior distribution is again truncated normal, 
but, instead of the underlying distribution being 
N(L  a2), it is N[(I  -- a2/,S), a2]. The moments of this 
distribution are calculated by the algorithm given above 
with the incorporation of this simple change in the 
underlying mean. 

Lastly, consider the prior given by (2.3), i.e. Wilson's 
distribution for a centric reflection. Bayes's theorem 
(A.0). gives, after 'completing the square' in the ex- 
ponent: 

ps(J l I ){  ~ Jo -l/2 exp { -½[J-  ( I -  o2/22~)]2/a2} if J >- O 

= if J <  0. 
(A.6) 

This, unfortunately, is not a truncated normal distri- 
bution, as can be seen from the presence of the j - v2  
term. However, it is nonetheless fairly easy to approxi- 
mate the moments of this distribution. Again for 
--4a <_ ( I -  a2/2,F,) < 4a the moments have been tabu- 
lated by numerical integration. Linear interpolation is 
used in these tables for this range. Outside this range 
we use an approximation developed as follows. 

Let Y have the normal distribution N[(I  -- a2/22~), 
a2], then we have immediately: 

Es(JII) ~_ Er (YIn ) /Er (Y  -In) (A.7) 

Es(r l I  ) ~_ 1/Er(Y - 'n) (A.8) 

vara(FII) = Ea(JII) - [Es(FII )]  2 (A.9) 

vars(JII) = vars(FII)4Es(JIl). (A.10) 

Instead of (A. 10) we could have noted that 

Es(J21I)~_Er(Y-3/2)/Er(Y -'/2 ) (A.I I) 

and calculated vars(JII ) accordingly, but this is 
unnecessary to our level of approximation. There is 
still the problem of calculating Er (Y u2) and Er(Y- ln) .  
Note that if Z is normally distributed N(g, 1) and 
g > 4, then (French, 1978, Appendix B): 

E z [ f ( Z  )] _~ f(/t)  + ~f"(fl) + f~v(~). (A.12) 

Combining (A.7), (A.8) with (A.12) gives, on writing 
h = (1/o - a/2S): 

Es (J I I )~_ha(1 -h -2 /2  - 3h- ' /4)  (A.13) 

Ej(FII) ~_ (ho)'n(1 - 3h-2/8 - 87h-4/128). 
(A.14) 

The required variances can then be developed by using 
(A.9) and (A.10). 
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By embedding the structure seminvariant T and symmetry-related variants of T in suitable structure in- 
variants Q the values of which, because of the space-group-dependent relations among the phases, are 
related to T, one reduces the probabilistic theory of the structure seminvariants to that of the structure 
invariants, which is well developed. The structure invariants Q are said to be extensions of the structure 
seminvariant T. 

1. Introduction 

It is assumed that the reader is familiar with the idea of 
'neighborhood of a structure invariant or semin- 
variant', the 'neighborhood principle', and the roles 
these concepts play in the probabilistic theory of the 
structure invariants and seminvariants (see, for 
example, Hauptman, 1975, 1976; Green & Hauptman, 
1976). Systems of neighborhoods of the structure 
invariants are now well known (see, for example, 
Hauptman, 1977a,b), and neighborhoods for selected 
structure seminvariants have also been identified 
(see, for example, Green & Hauptman, 1978). 

The major goal of the present paper is to show how 
to determine in a systematic and unambiguous way 
neighborhoods of the structure seminvariants in 
general by exploiting the symmetries deriving from the 
space groups. The method is to embed a given structure 
seminvariant T and its symmetry-related variants in 
suitable structure invariants Q to which T is related 
via the space-group symmetries. Then the neighbor- 
hoods of T are determined by the known neighborhoods 
of Q. The structure invariant Q is said to be an 
extension of the structure seminvariant T. Recently 

* Presented at the Michigan State University Meeting of the 
American Crystallographic Association, August 7-12 1977, 
Abstract H3. 

secured methods may then be employed to derive 
suitable conditional probability distributions leading to 
estimates of the structure seminvariants in terms of the 
magnitudes in their neighborhoods. 

The method will be illustrated by examples in space 
groups P1, P i ,  P2~ and P2~2~2~ but is clearly of 
sufficient generality to be applicable to structure 
seminvariants in general. 

Although the idea of embedding a structure semin- 
variant in an appropriate structure invariant is not new 
(Giacovazzo, 1975; Hauptman, 1976; Green & 
Hauptman, 1978) the present paper appears to be the 
first in which the interplay between the space-group 
symmetries and the neighborhood concept is syste- 
matically exploited. However, see Hauptman (1976) 
and Giacovazzo (1977b) for different techniques for 
obtaining neighborhoods of the structure seminvariants. 

2. The second neighborhoods of the three-phase 
structure invariant in PI and PI 

The linear combination of three phases 

T--- ¢Ph + ~Ok + tpj, 

is a structure invariant if 

h + k + l = 0 .  

(2.1) 

(2.2) 


